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Abstract-The elastic contact problem of a rigid cylindrical punch indenting a multi-layered linear
elastic half space is studied and then used to model the unloading phase of a microindentation test
of thin films deposited on a substrate. First. we adopt a moduli-perturbation method to construct
a closed-form. first-order-accurate solution for the contact compliance of a nonhomogeneous
medium with a piecewise constant (layered) or continuously varying moduli in the depthwise
direction. These solutions are used to estimate the unloading compliance associated with the
indentation testing or an Aluminum thin film dep<tsited on a Silicon substrate. Comparison with
results obtained from numerical computations indicales that the perturbation estimates are approlti­
mately valid for a moderate range of material combinations of practical importance. Also. a finite
element analysis is performed to investigate the eff~'1:ts of a penny-shaped debonding crack along
the film,substrate interface on the unloading compliance. and to analyse the energy release rate
which drives the interface crack. Important conclusions include: (i) interface debonding can cause
a signilicant increase in the unloading compliance oran indentation test; (ii) there eltists a saturation
crack sile beyond which the compliance no longer changes signilicantly with the crack length; (iii)
the plastic deformation near the indenter does not appr~'1:iably affeet the unlo:lding compliance. but
it plays a major role in maintaining the long r:mge energy rele;lse rate which drives the crack growth.

INTRODUCTION

Depth-sensing indentation tests have become widely used in determining mechanical proper­
ties of homogeneous .lOd layered materials such as thin films on substrates. This experi.
mentaltechnillue has stimulated theoretical modeling which often requires a fundamental
underst'lOding of clastic cont.lct problems associated with a nonhomogeneous medium.

Loubet t'l ai, (1984) first adoptcd thc clastic solution to a rigid cylindrical punch
indenting a homogeneous half spaec to model the unloading process of a Vickcrs indenter
penetrating into a Magnesium Oxide crystal. In agrcement with the elastic solution. they
found that the measured unloading compliance di/dF. i.e. the inverse slope of the unloading
plot of load F versus total indentation depth i. is linearly dependcnt on the inverse of the
plastic penetration depth I/lp by a material constant (I - v)/J1. where v and J1 denote.
rcspectively. thc Poisson ratio and shcar modulus. Thesc authors then suggested that the
indentation test could be used as a convenient approach for determining elastic constants.
Doerner and Nix (1986) extended this idea to indentation of thin films dcposited on
substrates. Due to the lack of elastic contact solutions for layered materials. Doerner and
Nix (1986) introduccd an "cffective" contact modulus. [( I - v)1J1lc,T. expressed as some linear
combination of the modulus of the film and that of the substrate. In that procedure. a
fraction cocllicient h'ld to be determincd by fitting a proposed function to measured
cxperimental data. King (1987) performed an integral equation analysis and modified the
formula proposed by Doerner and Nix to fit his numerical results. Subsequently. Shield
and Bogy (1989) presented a more thorough treatment for the problem of an axisymmetric
rigid cylindrical punch indenting a layered half space by using integral transforms to derive
singul'lr integral equations which can be solved numerically via expansion in orthogonal
polynomials. Their solution predicts partial separation within the contact region for stiff
layers on a relatively soft substrate. However. application of elastic solutions with partially
separated cont'lct areas to an indentation test is very questionable because the indenter is
expected to be in complete contact with the layered medium after extensive plastic pen­
etration has occurred. Yu t'l al. (1990) also formulated an integral equation approach to
study the axisymmetric contact problem involving an elastic layer either in frictionless
contact (no adhesion) or perfectly bonded to an elastic half space.
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Parallel to the above studies ofelastic contact problems. finite element methods (FEM)
with fully nonlinear. elastic-plastic analysis capabilities have also been developed to directly
simulate an indentation test (e.g. Bhattacharya and Nix. 1988; Laursen and Simo. 1992).
Such nonlinear numerical analyses are obviously necessary in order to evaluate the stress
distribution and plastic deformation near the indenter region. However. the unloading
compliance has been found to be insensitive to the plastic deformation and agree closely
with results predicted from elastic contact solution. Based on their finite element simulation
of AljSi thin film system. Laursen and Simo (1992) found that local plastic flow may give
rise to pile-up of material near the indenter for soft films on hard substrates and sink-in of
material for hard films on soft substrates; the actual contact area between the indenter and
the film also varies during the indenter withdrawal. These results significantly enhanced our
basic understanding of the plastic deformation involved in the indentation process and
provided valuable insights on how the contact area is affected by local plastic flow. For
sub-micrometer scale. ultrathin films on substrate, further investigations are needed because
inelastic material properties such as yield strength. friction properties as welI as the overall
constitutive relation wilI depend very sensitively on the microstructures that exist in thin
films and on the dimension of the films themselves.

Our work reported in this paper has been motivated by the above researches and the
need to better understand the indentation contact of multi-layered materials. Following
previous investigations. the unloading process of a rigid indenter penetrating a thin film on
substrate. as schematicalIy shown in Fig. I(a). will be modeled by a rigid cylindrical punch
in frictionless contact with a layered clastic half space. as shown in Fig. I(b). Our analysis
differs from previous studies in a number of aspects. First. we devise a first ordcr rigorous
moduli-perturbation method to derive a closed-form solution for the contact compliance
of an uncracked film/substrate medium. which has an advantage over previous analyses
that arc mostly or a numerical analysis nature. The perturbation analysis is based on the
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Fig. l. (a) A conical indenter penetrating a film/substrate medium. (b) A rigid cylindrical punch
indenting a layered half space.
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known elastic solutions for a reference homogeneous body and the perturbation solution
is written in such a form that exact solutions are retained in two limiting cases as the two­
phase film/substrate medium approaches a homogeneous body made entirely of the film or
the substrate material. Further, we show that the perturbation analysis actually provides a
first-order compliance solution to an elastically nonhomogeneous half space with arbitrary,
piecewise constant (layered) or continuously varying, elastic moduli in the depthwise direc­
tion. Comparison with results obtained from numerical computations indicates that our
closed-form perturbation solution is applicable for a moderate range of material com­
binations of practical importance.

To provide further motivation for this work, we note that, for the indentation contact
problem at hand and countless other mechanics problems associated with a multi-layered
material system, various numerical approaches. including methods of integral equations.
boundary elements and finite elements. are. at least in principle. all capable of providing
numerical solutions for given geometrical and material parameters. But a critical issue is
whether one will be able to extract the desired information with the least amount of effort
and greatest simplicity. Here we wish to show that. by using a moduli perturbation method.
it is indeed possible to construct some closed-form simple solutions which agree reasonably
well with. but are much simpler to apply than. the results obtained by other numerical
methods.

The recent experimental work of WU et a/. (1990a) suggested that the interface bonding
strength may have a substantial effect on the measured indentation compliance; these
authors found th.H. for two film/substrate specimens of identical material but with different
interface adhesion strength. the measured unloading stiffness (or compliance) could differ
significantly. Wu et at. (1990a) conjectured that interfacial debonding may have occurred
in the specimen with weaker interface. Further experiments by WU and coworkers on
indentation fatigue and scratch tests (Wu, 1991; Wu (·t a/.• 1990b) also indicated the
importance of interfaci'll debonding in the mechanical failure of a thin film/substrate
structure. In response to these findings. we perform an elastic finite element analysis to
examine the effects of interf'lcial debonding on the unlo'lding compliance and the energy
release rate which drives the growth of a debonding crack. To simplify the analysis, the
effects of plastic deform'ltion generuted during indentation are represented by a dilatational
trunsformation strain field in the film in the neighborhood of the indenter. A special scheme
of penalty and iteration method is used to treat the interface crack problem, in which the
upper and lower crack surface nodes either remain bonded or move independently in the
normal direction, depending on the resulting surface tructions along the crack surfaces. To
simulate frictionless contact between the crack faces. these crack surface nodes arc allowed
to slide freely against each other in the horizontal direction. Iteration is used to determine
the correct vertical displacements of the crack surface nodes since the crack surface traction
and the actual contact area arc not known a priori. The energy release rate G at the
interfacial crack tip, as the driving force for crack growth along the interface, is estimated
by the virtual crack extension method in the case of a small crack and by a plane stress
plate model for the debonded film in the case of a large crack.

As we will show later in the paper. the FEM analysis reveals that the elastic contact
compliance could be incre'lsed substantially (up to 25% among the cases we have con­
sidered) by cracking along the film/substrute interface. There exists a saturation crack size
beyond which the unlouding compliunce no longer changes significantly with the crack
length. By comparing the results with und without the presence of a dilatational inelastic
strain, it is verified that the plustic deformation docs not appreciably affect the unloading
compliunce. However. an estimate of the energy release rate shows that the plastic strain
provides a dominant driving force for the long range growth of an interface crack.

FIRST ORDER ELASTIC CONTACT SOLUTIONS FOR AN UNCRACKED LAYERED MEDIUM

Geometry alld slatemelll of tire I'roh/em
In this section. we present a remarkably simple first order perturbation solution for

the compliance of a rigid cylindrical punch in frictionless contact with a layered elastic
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medium. as shown in Fig. I(b). The materials are assumed to be isotropic with shear
modulus J.l and Poisson's ratio v. Subscripts for s will be attached for reference to the
properties of the film or the substrate.

Following Doerner and Nix (1986). the problem depicted in Fig. I(b) will be used to
model the unloading process of a conical or pyramidal indenter penetrating into a thin film
deposited on substrate. as schematically illustrated in Fig. I(a). Conceptually. the total
indentation depth t can be divided into two parts: the "plastic" depth tp and the elastic
depth t. During unloading t is fully recoverable and tp is assumed to remain constant. [n
this manner. the unloading process can be approximately modeled as one of elastic contact
between a rigid cylindrical punch and the film/substrate material having a circular contact
area that is taken to be equal to that of the projected area of the penetration region of the
actual indenter (Loubet et af.• 1984; Doerner and Nix. 1986). For a conical indenter. the
contact radius a and the plastic depth tp are related by tp = a/tan 4J where 4J is the half
indenter angle.

The punch model for indentation assumes constant contact area between the indenter
and sample during unloading. The finite element simulation of Laursen and Simo (1992)
indicated that the actual contact area may change dramatically during the full range of
unloading (by as much as 50% for Al/Si). However. for initial unloading the contact area
does appear to remain constant [e.g. see Fig. 3.9. Laursen and Simo (1992)]. It is thus
appropriate to model the elastic behavior during initial unloading as that of a tlat-ended
cylindrical punch so that the linear portion of the unloading curve can be used to extract
the elastic properties. Nevertheless. one should note that the parameter tp • while instructively
called the "plastic depth". may not be equ;tl to the real plastic penetration depth. but rather
corresponds to the depth of the contact region when unloading begins. As elastic rebounding
proceeds. part of tp could be recovered and only the residual indentation depth at zcro
indenting force rcpresents the real plastic penetration. A better elastic contact modcl
incorporating the full nonlinear unloading behavior is certainly dcsirable. But such models
will inevitably result in a great compromise in mathematical simplicity of the analysis.

We shall follow a first order moduli-perturbation method [e.g. Gao (19lJ I)] in which
the displacements and stresses in a nonhomogeneous medium arc determined based on thc
known solutions to a reference homogeneous body. as in Fig. 2. For the axisymmetric
frictionless punch problem we consider. the required reference solutions for the homo­
geneous body can be found in a number of books such as Timoshenko and Goodier (1970).
Sneddon (1951) and Neuber (1937). For example. the total applied force F is rdated to the
vertical displacement to (Fig. 2) of the punch by

F 1-\'
ttl = .- .. ----.

40 Jl
( I )

Now the question is how the force F and the vertical displacement of the punch t will be

z

Fig. 2. A rigid cylindrical punch indenting a homogeneous half space.
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related in the case of a layered material as in Fig. t(b). The eltact answer to this question
would require numerical calculations. but we derive a closed-form, first-order-accurate
solution to the problem.

M odu/i-perturbation analysis
Consider the elastic contact problem in Fig. I(b). The film/substrate medium can be

viewed as a homogeneous body made entirely of the substrate material subjected to a phase
transformation in the film region 0 < z < h. During the transformation, the applied force
F is kept constant but the vertical displacement t and the strain energy are allowed to
change. Energy conservation law requires that the extra work done by the force Fbe equal
to the energy change in the whole body. To the first-order accuracy in the moduli variation,
the equation of energy conservation reads

(2)

where c5to is the displacement change, c5c;fl<1 = C~kl-C:jkl denotes the change in elastic moduli
from originally pure substrate material to the present nonhomogeneous film/substrate
medium. and u? is the known displacement solution for the reference homogeneous body
in Fig. 2. The right-hand side of eqn (2) denotes the first order energy variation due to a
moduli transformation [e.g. Eshelby (1970». For isotropic solids, c5ci,kl can be rearranged
as

where ,1,. is the Lame constant of the substrate, 6,IJ = IJr- IJ. and

6,,1, 6,IJ IJr (vr - v.)
e=---=-' .

,1,. IJ. IJ. v.(1- 2vr>

(3)

(4)

Substituting (3) into (2) and invoking the divergence theorem to the second term in the
integral lead to the following expression for bto/to,

(5)

where Vrand Ardenote the domain volume and the boundary surface of the transforming
(film) region. Summation over repeated indices will always be implied in the paper. For the
present film/substrate geometry, A r consists of two horizontal planes z = 0 and z = h, and
the area integral on the plane z =0 is equal to Fto. Thus, eqn (5) reduces to

(6)

Substituting the reference elastic contact solutions for punches on a homogeneous body
[e.g. Neuber (1937)] into eqn (6), the two integrals are found to be

and

eA.. i 00 dV_ IJr(I-2v.Hvr-v.)/ (~)
- ££U - I ..
Fto v, Jl J.l.(1-2vr>(l-v.)

(7)
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(8)

where ~ = h/a and

• 2 • ~ I +~2
/ 1(1;) = - arctan 1;+ -In -.-,-

rr rr i;-

• 2 = I [ .,. I+e ~ ]10U;)=-arctan .. +.., (I ) (1-_v)i;ln-"---1."rr _7! -v 1;- +1;-

(9)

( 10)

The detailed calculations of the integrals are presented in the Appendix. Both 10 and II
vanish as ~ -> 0 and approach unity as ~ -> 00. The total vertical displacement 1 can be
written as 1 = 10+c5/0' with the result

F(I-l")[ Vf-V, Jlf-JI, ]
I(h/a) = 4 1- -1-/I(h/a)- --/o(lI/a)

aJI, - v, JI,
(II )

to first order in the moduli variations. Vr- v, and (Jlf- JI,)/JI,. The first order solution in eqn
(II) reduces to the exact solution in the limit of h/a -> O. corresponding to the case of a
homogeneous h'llf space made entirely of the substrate material.

The moduli perturbation can be achieved in two ways. from a homogeneous matrix
by transformation in the tilm region 0 < : < h. or altermltively. from a homogeneous film
by tmnsformation in the substrate region h < : < 00. Thus. one could write another first
order perturbation formula. simil'lr to eqn (II) but based on the reference state of a
homogeneous tilm. Within first order accuracy. the two perturbation formulae must agree
with each other because they arc both rigorous to first order in moduli difference. (n the
two limiting cases. i.e. as the geometric ratio h/a approaches either zero or infinity. the
displacement solution 1 has the exact solution given in eqn (I) for a homogeneous half
space. In order to retain the form of the exact solutions in both limiting cases. we combine
the two first-order perturbation formulae into the following unified form

F(I-V)[ lOr-V J[ Jlr-JI J-I
I(h/a) = 4 ' I - -I-' II (h/a) I + -.-' lo{ll/a)

~~ -~ ~

F 1-[vf/l+v,(I-/dJ
=4a' Jlr/o+Jl.(I-/o)

(12)

The modified perturbation solution for 1 in eqn «( 2) perfectly matches the exact solutions
in both limiting homogeneous cases. i.e. as h/a -> 0 and h/a -> 00. and is equivalent to
eqn (II) within first order accuracy. By comparing with results obtained from numerical
computations. it has been found that eqn (12) has a larger range of validity for moduli
differences than eqn «( I). Later. we will show that this solution is valid for a moderate
range of material combinations of practical importance.

Equation (12) indicates that for a film/substrate medium the punch displacement 1 is
linearly dependent on the total force F through some effective contact compliance modulus.
This relation is. in spirit. consistent with those proposed in previous studies (Bhattacharya
and Nix. 1988; King. 1987; Doerner and Nix. 1986). However. it has been previously
assumed that the effective contact compliance can be written as a linear combination of
those of the film and substmte weighted by a fraction coefficient i(1l/a). i.e. (Bhattacharya
and Nix. 1988; King. 1987)
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(I-V) (I-V) . (I-V) .- = - I(hla)+ - [I-I(hla»).
P.rr Pr P.
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(13)

In contrast. eqn (12) shows that, to at least first-order accuracy, the effective contact
compliance should have the form

(14)

which is equivalent to choosing the "effective" Poisson's ratio V.rr and "effective" shear
modulus /lerr as

(15.16)

Further examination of the two weighting functions 10 and II reveals some interesting
features of the effective constants V.rr and /lew as defined in (15) and (16). [t can be seen from
eqn (8) that 10 gives the ratio of the strain energy stored in the transforming (film) region
to the total strain energy stored in the half space. Hence. it can be said that PefT is an average
shear modulus weighted by the strain energy density distribution. On the other hand. II
can be rewritten as

).+2p I i
II =-E -F Ukk&i/ dV.

/0 Vr

which gives the ratio of the dilatational strain energy stored in the transforming (film)
region to the total dil'ltational strain energy. [n other words. II is proportional to the
hydrostatic part of the strain energy stored in the film region before moduli-transformation.
Thus, it can be said that VolT in (16) is an average Poisson ratio weighted by the dilatational
strain energy distribution.

Some ambiguities (higher than first order) arise in determining /letT, in that the function
la depends on the Poisson ratio V which can be taken as either the film or the substrate
value. However. this is found to have a negligible effect because both 10 and PetT are rather
insensitive to the choice of v. As shown in Fig. 3, when v is allowed to vary between 0.2
and 0.4 with Jl,IJ'r between 1/2 and 2. the variation of 10 is less than 8% and that of JlelT is

0.9 ".11' =
1'.11' =
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Fig. 3. The weighting functions 10 and I, of eqns (9) and (lO).
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within 6.5%. Specifically. for the Aluminum thin film on Silicon substrate. the variations
are within 1%. [The material constants of Al and Si are listed in Bhattacharya and Nix
(1988). Table 2.] Hence. the ambiguity resulting from the r dependence of III can be
neglected. at least in the range 0.5 < /l.!/lr < 2 and 0.2 < \'f.• < 0.4. Figure 3 also indicates
that II approaches unity faster than Ill. implying that the substrate has a greater influence
on /letf than on rctT' For instance. when the contact radius is one third of the film thickness
(Le. h/a = 3). the substrate has only 10% influence on VctT in comparison with about 25%
influence on /-letT'

Application to microindentation of thin films on sllbstrate
Equation (12) can be used to determine the unloading compliance of a conical or

pyramidal indenter penetrating a thin film on substrate. as a function of the plastic inden­
tation depth II' [Fig. I (a)]. Requiring that the elastic contact area lW

2 be equal to the
projected area of the penetration region of the actual indenter yields a relation between the
elastic contact radius a and the plastic depth I p • For a conical indenter. that relation is
simply I p = altan c/J where c/J is the half internal angle of the cone. Other indenter shapes
such as a pyramidal indenter can be converted to an equivalent conical indenter by the
same equal projection principle. Therefore. the unloading compliance of a conical indenter
is

( 17)

where the el1cctive contact modulus is given by (14).
Figure 4 plots the unloading clastic compliance h dlldF vs h/lp as predicted by (17) for

a conical indenter with cf> = 68" penetrating an Al thin lilm on Si substrate. in which the
moduli of Al and Si arc chosen as the same as those used by Bhattacharya and Nix
(19H8, Table 2). The corresponding results obtained from clastic-plastic FEM analysis by
Bhattacharya .\Od Nix (1988) and those predicted by King's (1987) integral equation
analysis arc also shown in the figure for comparison. Our lirsl order solution appears to be
in close agreement with the results from numerical computations. Compared with King's
empirical formula, our solution is analytically rigorous to first-order accuracy in moduli
differences. In this case. the shear moduli ratio is as hlrge as 1.74, and the first-order moduli­
perturbation analysis still provides a good estimate for the unloading compliance.
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Nonhomogeneous medium with piecewise constant or continuously t'arying moduli
Our moduli·perturbation analysis provides a natural channel for extension to more

complicated problems. Figure 7 depicts a substrate coated with n elastically dissimilar films.
Following similar steps as in (2)-(12). the first·order solution for the contact compliance
can be obtained as

n

F I - [I-II (hn/a)]\'. - ;~l [II (hda)-II (h,_ .Ia)]v;

t=4' n •

a [1-Io(hn/a)]JL. + L [Io(hda)-Io(h,_ da)JJLi
i= I

(18)

where hJa is defined in Fig. 7.
A rigorous analysis of error bounds for the perturbation formulae in eqns (12) and

(18) is not yet available. It is thus necessary to examine the range of validity of the first
order solutions through comparison with results obtained from numerical computations
such as FEM analysis of a film/substrate medium with increasing moduli differences.
(Detailed information about the meshes and elements used in our FEM calculations are
presented in the next section.) Figure 5(a) plots the nondimensional compliance versus the
shear modulus ratio JlrlJI, for one layer of thin film on substrate with \'r = v, = 0.25 and
geometric aspect ratios h/a = 0.5. 1.3. 7. We found that the results predicted by eqn (12)
are within 7% of those predicted by FEM analysis for 0.5 < J1r/Jl, < 2 for all cases
considered. The perturbation solution bt..'Comes increasingly accurate as h/a increases. Figure
5(b) plots the same results for two different layers. For convenience. the shear modulus of
the middle l~lyer is taken to be the average of those of the top layer and the substrate.
Compared with the one layer case in Fig. 5(a). a similar. slightly improved accuracy range
for the perturbation solution is observed in this case. The effect of a different Poisson's
ratio is also examined. Figure 6 plots ht/Fversus Vr for JLrlJl. = 2. v, = 0.2 and h/a = 7. In
that case. the differences between the perturbation results and FEM results are about S'Yo.
Thus. based on FEM calcul:ltions. the first order solution in eqn (12) appears to be within
7% error for 0.5 < JlrlJI, < 2 and 0.2 < Vr.• < 0.4. In fact. we find that the perturbation
results agree fairly well (within around 15% error) with the FEM results for moduli ratio
as large as 3, In that range. the linear clastic finite element calculations we adopt may
themselves have significant errors. For example, as moduli difference increases, a hard film
on rdatively soft substr;\te behaves somewhat like an elastic beam on a soft elastic
foundation. in which case the linear elastic finite elements are expected to underestimate
the system compliance. More accurate finite element calculations with large deflection
capabilities will be needed to fully resolve this problem.

The remarkable accuracy of the modified first order perturbation formula in eqns (12).
(17) and (18) for moduli ratios up to 2 or 3 should not be considered as being just fortunate.
It is known that properly rewriting a perturbation formula of the same order could result
in a substantial increase in its range of validity. Numerous examples of success could be
given. As an exumple known to the fluid mechanics research community. Shanks (1955)
[see also Van Dyke (1975) for more discussions on the convergence properties of a per­
turbation series expansion] showed that by properly rewriting a perturbation solution for
the drag of a sphere in the Oseen approximation for low Reynolds number (R) flow, the
original perturbation solution. which is only valid for R < I. can be converted to one which
agrees well with more exact calculations up to R = 10. In a perturbation analysis of 30
planar cracks, Gao and Rice (1987) found their first order solution. when applied to an
elliptical crack, is accurate within 5% up to an aspect ratio as large as 2. Our modified first
order solution in eqn. (12) was obtained so that the form of the exact solutions is retained
in both the limiting homogeneous cases. as a/h -+ 0 and a/h -+ 00. It is known thut properly
matched perturbution solutions can often achieve remarkable agreement with exact
calculations.

The general solution to a rigid punch indenting a nonhomogeneous material with
continuously varying moduli 11(=) and v(=) can also be constructed. Taking the limits as
hi -+ hi _1 and n -+ 00 in eqn (18). the final solution has the integral form
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( 19)

Without further comparison with numeric••1 results. we expect that these formulae have
similar ranges of validity as eqn (12). Analogously. these solutions can be used to model
the unloading process of indentation testing of a substrate with multi-layer coating or a
nonhomogeneous solid with continuously varying clastic constants.

EFFECTS OF A PENNY·SHAPED INTERFAClt\L CRACK

Fillite e/emellt set-lip
In the previous section. closed-form first-order solutions have been derived for the

elastic contact modulus of a layered medium. These solutions can be used to understand
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Fig, 7. A rigid cylindriclIl punch indenting a ,,·Iayer coating on substrate.

the effects ofmaterial inhomogeneity on the indentation of thin films deposited on substrate.
However. as Wu et al. (l990a) pointed out. interfacial cracks may also come into play if
the adhesion strength of the film/substrate interface is weak. The effect of such interfacial
cracks on the contact compliance of the film/substrate and the crack-tip energy release rate
are studied in this section. Wu et al. (1990a) observed that the measured unloading
compliance of a film/substrate specimen may show a huge discrepancy depending on the
adhesion strength between the film and the substrate. In their experiment, two specimens
of Al/Si are tested using a pyramidal indenter, one with a' very strong interface bonding
and the other with a weak bonding. It was suggested that an interfacial crack developed in
the specimen with weaker interface. resulting in a dramatic increase in the unloading
compliance. In response to this experiment, we carry out a FEM analysis to investigate the
effect and behavior of such debonding cracks. based on the DLEARN finite element code
(Hughes. 1987). For simplicity, we consider the geometry ofan axisymmetric penny-shaped
crack with radius L along the film/substrate interface. as illustrated in Fig. 8. The crack
surfaces will be allowed to slide without friction (although consideration of friction poses
no essential difficulties to our numerical calculations).

As is known. several complications may arise in the finite element simulation of
indentation contact. First. for our problem an infinitely large domain needs to be considered
for complete elimination of boundary effects. In FEM analysis that is usually approximated
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Fig. 8. A rigid cylindrical punch indenting a film/substrate medium containing a penny-shaped
interface crack.

by taking a very large domain with displacements fixed around the boundary. This large
domain size is essentially arbitrary as long as proper convergence can be achieved. The
overall domain size is generally one or two orders of magnitude larger than any length
scales involved in the problem. In anticipation, such an approach would require a large
number ofelements for elastic contact problems because the remote stress field decays only
in the order I/r. Thus. we choose to adopt the so-called infinite element (Zienkiewicz £'lal.•

1983; Zienkiewicz, 1989) which simulates an infinite domain through a proper mapping
function. A layer of infinity element is added outside our regular mesh domain which is
taken to be about 10 times larger than the largest length scale among the punch radius (a).
liIm thickness (It) and crack length (L).

The second pn)blem emerges in simulating the crack face contact due to compressive
loading. A common .tpproach for traction-free. open crack surf.tces is to distribute two
arrays of nodes. one along the upper crack face and the other along the lower crack face.
Two corresponding cmck face nodes have the same spatial co-ordimltes but independent
degrees of freedom. The situution becomes more complicuted when parts of the cmck
surl~tces may be brought into contact under compressive loading. as in the indentation
problem. In that c..lse. crack face interpenetration muy result if fully independent degrees
of freedom are granted. To avoid this problem. the crack face nodes in contact should be
constmined to move together in the normal direction. yet allowed to move freely relative
to each other in the horizontul direction. In other words. the crack face nodes should be
constrained ditferently depending on the locul cmck face configuration (open or closed).
We adopt the so-culled penalty method in which a spring element with very large stilfness
is added between two separate crack face nodes to make them move together in the normal
(:) direction. Our FEM procedure begins by setting up an array of normal spring elements
for all crack faee nodes. After the initial run. the normal traction along the crack face is
computed und any nodes showing tensile traction are set free by removing the spring
clement at those nodes. This procedure is iterated until no tension is found along the crack
surl~tces. By doing so. it is guaranteed that the crack surfaces will open under tension but
close to contact under compression.

PI.lstic dcCorm'ltion generated as the hard indenter penetrates into the film/substrate
medium poses .mother complication to our analysis. A fully clastic-plastic rEM analysis
is known to be very costly. especially if a lurge amount of information on different crack
lengths and film thicknesses is desired. Since previous elastic calculations matched so well
with the fully elastic-plastic FEM analysis by Bhattacharya and Nix (1988), one may
anticipate that the plastic strain will not have significant effects on the largely elastic
unloading process of an indentation test. Further support of this conclusion is provided by
our rEM analysis which shows that a uniform dilatational residual strain, whose magnitude
is determined by the volume of the penetrated indenter region, in the near neighborhood
of a punch does not cause appreciable change in the elastic contact compliance. However,
the residual strain in the debonded film due to plastic deformation may be a major source



Elastic contact vs indentation modeling 2483

for the energy release rate. as shown in the previous work by Evans and Hutchinson (198~).

Sufficiently large residual stress may lead to buckling of the film. The reader is also referred
to Hutchinson et al. (1992) for more recent work on the buckling-driven film delamination
problems. Using a simple plane stress film delamination model. we provide estimates for
the calculation of energy release rate at the interfacial crack tip. which is compared to a
uniform stress model by Evans and Hutchinson (1984).

Figure 9 shows a typical axisymmetric FEM mesh used in our computation. In this
figure. both the film thickness (h) and the punch radius (a) are assumed to be unity. The
domain size with regular elements is taken to be 100 x 20 (r x:) and a layer of infinity
elements is distributed around the regular domain. The total node number reaches 20M.

A 9-node isoparametric element [Fig. lO(a)] is used for the overall domain and special
singular elements (Barsoum. 1977) are adopted to account for the stress singularity at the
punch and crack tip. The singular element is a triangular element [Fig. lO(b)] degenerated
from the 9-node square element with transition of the mid-side nodes to quarter points.
This element is known to have the same order of stress singularity throughout the element
(Atluri. 1986). The symmetric boundary condition II, = 0 is imposed at r = O. and zero
displacements (II, = II: = 0) are imposed at the infinity nodes via the mapping function in
the infinity element.

With the above mesh and element set-up. a constant normal displacement (I) is imposed
at: = 0 and Irl :;;; a. The nodal stress values arc obtained by the local least square method
(Hinton and Campbell. 1974). These nodal stress values are then used to produce the total
normal force under the punch by both cubic spline interpolation and 15 points Gauss
Chebyshev integration rule. Finally the integrated total force is divided by the imposed
displacement I to yield the contact stiffness or compliance of the film/substrate composite.
This FEM set-up can be tested by first considering an uncracked homogeneous body (Fig.
2). Comparing with the exact solution in eqn (20). the relative error of the FEM result for
the contact compli'lnce W'IS found to be within I % error.

We usc AI thin film on the Si substr'lte in the FEM calculation. Table I lists the selected
m'lterial constants of AI and Si. Four different ratios of contact radius to film thickness.
a/" = 0.2. 0.5. 1.0. 2.5. will be considered. A proper analysis range of the crack size is
chosen based on the stress distribution along the uncracked interface shown in Fig. fl.
Note that the normal stress (1:: is always negative (compressive) while both normal and
shear traction diminishes'to nearly zero beyond a characteristic distance several times the
film thickness. suggesting th'lt the ctfects of interface debonding will quickly saturate as the

100

Fig. 9. The axisymmetric FEM mesh.
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Fig. 10. (a) A 9-nade isoparametric clement and (b) a quarter-node singular clement.

crack extends beyond that characteristic distance. Guided by this observation, we performed
the FEM computl.ltion for LIII values lying in the range with significant interface traction
distribution.

A uniform dil(ltl.ltion with magnitude equal to the penetrated indenter volume was
imposed in the region 0 < =< h (Fig. (5) and 0 < r < a to represent the plastic deformation
generated during penetration. All calculations were carried out for both with and without
the presence of the dilatational strain. A total of 36 cases were run on a Convex: computer.
The CPU time was about 3 min for each run.

Ejfecr 0/ infer/ace cracking 011 COl/fact compliance
The calculated contact compliance (C) will be normalized with respect to that of the

film (AI) material (Cr),

Cr = (I - \'()/(2£ra). (20)

The normalized compliance CICr is plotted in Fig. 12 as a function of the crack length Llh.
The calculated values are shown as dot points. The solid lines are obtained by cubic spline
interpolation of the FEM results. In all cases considered, with or without interfacial crack,
the dilatational strain does not appear to cause any appreciable changes in the contact
compliance value. Thus. in consistency with the previous elastic-plastic FEM analysis by
Bh.lttacharya and Nix (1988), our calculations provide further evidence that the plastic
effects can be neglected in estimating the unloading indentation compliance of a thin film
on substmte.

Table I. Material properties of AI and Si

E(Gpa)

AI
Si

71.391
165.89

0.347
0.218
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The previous perturbation solution showed that the effect of substrate increases with
the contact aspect ratio a/h. Our fEM results reaffirm this tendency. Without cracking, the
contact compliance of the AI/Si system is around 93% that of Al for a/h =: 0.2, and it drops
to only 67% for a/h =: 1.0. This appears to be in reasonable agreement with the experimental
result of Wu et al. (1990a).

figure 12 shows that the contact compliance quickly approaches a constant value as
the crack size reaches a characteristic length which. for convenience. will be referred to as
the elastic saturation crack size. The saturation crack size ranges from a few times the film
thickness for small a/h values such as 0.2 to about 20 times for relatively large a/h values
such as 2.5. The presence of an interface crack increases the contact compliance by up to
7.2% when a/h =: 0.2 and up to 25% when a/h = 1.0. corresponding to stiffness reductions
of 6% and 20%. respectively. These results can be compared with the experimental obser­
vations of WU et al. (1990a). These authors measured the contact stiffness values using a
pyramidal indenter of internal angle 77" which, according to the principle of equal contact
area projection. is equivalent to a conical indenter with half internal angle 4J = 70°. figure
13 plots our fEM values for the contact stiffness at different tl'/h for the Al/Si system in
the limits of zero and saturation crack length. Compared with our results. WU et al. (1990a)
observed a slightly larger stiffness reduction due to cracking (about 32% in the case
a/h = 1.0). Other than possible experimental fluctuations and the approximations adopted
in our contact model, this difference may be attributed possibly to additional cracking
normal to the interface due to indenter penetration.

Estimates for the crack-tip energy release rate
The driving force for the interfacial crack comes mainly from two sources. first. the

force F on the indenter causes clastic strain energy stored in the body. which may be partly
released as debonding occurs. Second, the energy stored as residual strain in the body due
to the plastic deformation generated during penetration of the indenter may be released as
the debonding crack grows along the interface. for ease of discussion, we shall refer to
them as the clastic and plastic strain contributions. respectively.

The clastic contribution GO to the energy release rate can be calculated from the change
in the contact compliance C (Kanninen and Popelar. 1985. p. 160) of the body with respect
to the crack size enlargement. We adopt a more accurate calculation using the virtual crack
extension method (Parks. 1974), with results plotted in fig. 14. It is observed that GO first
reaches a maximum peak and then diminishes to zero as the crack size exceeds a saturation
length. in consistency with the behavior of the contact compliance.

The plastic strain contribution GP to the energy release rate can be estimated using a
plane stress model in which the debonded thin film is treated as a thin circular plate. as in
Evans and Hutchinson (1984). We hasten to point out that our calculations indicate that

perfectly booded ioterface
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Fig. 13. Variation of contact stiffness Flrh with plastic depth t"th.
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Fig. 14. Energy release rate at the crack tip in the absence of plastic deformation.

GI' is at least two orders ofmagnitude larger than Ge, suggesting that the elastic deformation
can be essentially ignored as far as the energy release rate calculation is concerned.

Evans and Hutchinson (1984) approximated the debonding film as a thin circular
elastic plate clamped on the edge and subjected to a uniform biaxial strain caused by the
indenter volume squeezed into the film. Their result. when specialized to our geometry,
yields

(21)

Such a uniform stress model ignored the stress variation in the film. A more realistic model
would incorporate the actual plastic zone. Here we adopt a slightly different model to
estimate the plastic strain contribution GP. Figure 15 shows the geometry of our model for
a film debonded along a circular region of radius L. The debonded film can be divided into
two characteristic regions. For simplicity, the inner region r < a is taken to be the plastic
zone in which the film is subjected to a volume expansion equal to the penetrated indenter
volume. and is constrained by the punch at z = h and by the substrate at z = O. (n the
annular region a < r < L, the film is treated as a thin elastic plate clamped at r = L.

The following boundary conditions are imposed on the annular region a < r < L:

h

2L
-----I-r

Fig. IS. Schematic diagram of a film debonded from a substrate along a circular area of radius L
and subjected to a dilatational strain £0 in the region r < a.
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U, = 0 at r = L. U,=UI atr=a. (22.23)

where UI represents the radial displacement due to the dilatation within the inner plastic
region. 0 < r < a. where the boundary conditions are taken to be

lI: = 0 at == O. lI, = III -eoa at r = a. (24-26)

where eo represents the dilatational strain caused by plastic deformation. Here lI, and lI:

refer to the elastic part of the displacement field. The continuity of the total displacement
in the radial direction has been imposed at r = a through the condition (26). The above
boundary value problem can be solved following the standard method. Requiring arT to be
continuous at r = a gives

(27)

The strain energy W stored in the whole debonded region of the film is calculated to be

(28)

Differentiating W with respect to the crack radius L and dividing the result by 2rrL yields
the energy release rate GP,

(29)

For a conical indenter with angle 2cjJ, the dilatational strain eo is approximated as
aj(9h tan t/J). Assuming L » a, we find

(30)

Interestingly. this expression differs from the solution of Evans and Hutchinson, eqn (21).
only by a factor 2( I +v()j[9( I - v()l] which is about 0.70 when v( = 0.347 for AI.

The boundary condition (24) assumes that the film is fully constrained in the vertical
direction. This may be unrealistic because some relaxation in the vertical direction may be
possible as the indenter penetrates into the film. Alternatively, we consider a traction-free
condition at == h. In that case, the same calculation procedure leads to

(31)

which differs from eqn (30) by a factor II( 1- v( )2.
Curiously, eqns (21), (30) and (31) all suggest that GP_a 6L- 4h- 1 (or t;L- 4h- I

).

These solutions are essentially of the same order with slightly different coefficients. Our
FEM calculation also gives similar results which are found to lie in the range between those
predicted by eqns (30) and (31). Substituting typical geometrical and material constants
into eqns (21). (30) and (31) indicates that the value of GP is at least two orders of magnitude
larger than the elastic contribution G" calculated by FEM. as presented in Fig. 14. Thus,
we conclude that the plastic deformation does not cause appreciable changes in the elastic
contact compliance, but it plays a major role in the energy release rate which drives the
growth of a debonding crack.
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SUMMARY

In this paper we have addressed certain aspects of an elastic punch contact problem
arising in modeling indentation tests of a layered material. First. a first order moduli·
perturbation method has been used to derive closed-form elastic solutions. as given in eqns
(11). (18) and (19). for the contact compliance of a nonhomogeneous solid with piecewise
constant or continuously varying moduli. The perturbation solutions are rigorously valid
to the first-order accuracy in the moduli variation. Comparing with numerical results in the
literature. our solution has the advantage of being (i) in closed-form. (ii) first-order rigorous
and (iii) easy to extend to more complicated elastic contact problems for a nonhomogeneous
material. The perturbation solutions are used to estimate the unloading compliance associ­
ated with an indentation test of AI thin film on Si substrate. The result appears to be in
good agreement with the elastic-plastic finite element analysis of Bhattacharya and Nix
(1988). The range of validity of perturbation solutions has been further examined through
comparison with numerical results obtained from a finite element analysis. It is found that
the perturbation solutions are approximately valid (within 7% of FEM results) at least for
moduli ratio up to 2.

Further. we perform a linear finite element analysis to examine the effects ofan interface
debonding crack on the contact compliance and to compute the energy release rate at the
crack tip. Important conclusions are:

(I) Interface cracks can cause a significant increase in the contact compliance of a
hlyered medium.

(2) There exists a saturation crack size beyond which the contact compliance no longer
changes significantly with the crack length.

(3) The plastic strain ncar the indenter docs not cause appreciable changes in the
unloading compliance. but it plays a dominant rolc in interface debonding by
providing a long mnge energy release rate which drives the crack growth.
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APPENDIX: CALCULATION OF INTEGRALS FOR I" AND I,

In the following. we will evaluate the key functions 10 and f. in eqns (7) and (8) of the tellt:

2lt r'o

f,,(lr/a) .. 1+ FI" J" (I1"U, +11"u,),_.r dr. (AI,A2)

Here for conciseness we have ignored the superscript 0 for quantities pertaining to the homogeneous half sp;u.:e,
as it appeared in eqns (7) and (II). The homogeneous solutions for u" u" a" and a" to the punch contact problem
can be: determined from the Neuber's potenti,,1 C (Neuber. 1937; Gao, 19119):

1/," -1-
t
"-(1-2v)C,+:C."J,

It( -V)II
I" C C

1/, .. - It(l_v))2(1-v) .,-: .")+t,,.

2111
" (0 C)11,," - It(l-v)u .,,-:.m'

(A3, A4)

(AS,M)

where the conslants u and to are the radius and the vertical displacement of the indenter. To carry out the integrals
in (A I) and (A2). it is convenient 10 ellpress the Neuber's potential C in Ihe oblate spheroid,,1 coordinates (s,l)
(Neuber. 1937; Gao. 1989)

G.. u l {~arctan (sinh s) +sin t-In (cosh s( I +sin l)J},

where (s.t) arc related 10 the cylindrical coordinate (1'.:) by

r+i: .. u cosh (s+il).

Functiun I.
Applying variable transformation ~ '" sinh.f to (AI) and denoting ~o '" h/u. 10 can be rewrillcn as

2ltQ
l r" (~l + :')I,,(~o) '" 1+ Ft

o
1. (a"u,+C1,:U,),.. 0~1" d~.

Substituting eqns (A3)-(A 7) into (A9) leads to

where

(A7)

(A8)

(A9)

(AlO)
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(All)

(AI2)

(AI3)

In the following. we will integrate 9,. 9: and 9) respectively. The integral of the rational algebraic fraction in the
variable 9, is found to be

Therefore. 9, can be integrated by parts. The result is

r" d" 2 I { .. 'to r"[ -~. ~)~o-W ] .}
~. 9, ~ '" ( -v) 9)an:tan~I{.-~. W+~:) + (~'Hi)(IH2) d~

.. 2(I-v){an:tan ~o+ 1I4~.ln ~ -~o In (~. Hi)l[ol

.. 2(1 - v)(i1n:tan ~o -l~o In ~o + ~~o In (I +~i)l.

The variable 91 can be eltpressed as partial fractions:

Then. the integration of eqn (AI6) is straightforward:

r" c ~.~~ -~~ _2~2~~ _(~C~o +2~'~~ H~l In (~. Hill"
~. 92 d~ .. ~.In ~+ 4W+W 2 ~•

.. 4(I~W -!~o In ~o+~~o In (I Hi).

The variable 9) can also be eltpressed as the following partial fractions:

(AI4)

(AIS)

(AI6)

(AI7)

By collecting the terms which have an even power of ~ in the numerator. 9) can be rearranged as

The integration is similar to (AI7) eltceptthe last term. Observe that the last term can be integrated to be

Carrying out the integration of the remaining parts ofg). we have

Ie dC (I 2)" I .. (I-2v)~olnWHi) (1-2v)~~i
. 9) ~.. - V ~o n ~- 4 - ,,'+ .. 1
~. ~ ~o

(7 -8vW~: +(S-8v)~~ _2~2~~ I'"
+ 4(~'+~i)2 {c·

(1-2v)~o In ~o (I-2v)~o In (I +~i) ~o

.. - 2 + 4 - 4(1 Hi>' (A20)
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Combining eqns (AIS). (AI7) and (AlO), the function 10 is found to be

2 • (1-2v) IH~ '0
loCeo):o;rarctan'o+2It(l_v)eo 1n ,~ -2ltCI-v)(I+,~)' (A21)

Function I,
From eqns (A3HA7), applying the same transformation e.. sinh s as we do in eqn (A9) and denoting

" == :/a. the dilation e.. :0 Uu is simply

e.. = _ 2(1-2v.)10 a = _ 2(1-2v,)to~
It(l-v,>a JZ 1t(I-v,)a ,'+,,1'

Substituting (A22) into (A2) leads to the closed-form eltpression for I,

l( . = l+e~)
:0 - 2 arctan 'o+~o In -.,- .It .;.

where eo .. h/a.

(All)

(A23)


